Пневматическая тормозная система: устройство и работа

Пневматический тормозной привод — вид конструкции тормозной системы, которая использует в качестве энергоносителя сжатый воздух. Пневматические тормоза используют в разных видах транспорта:

  • пассажирские автобусы;
  • грузовые коммерческие автомобили;
  • специализированная техника — грейдеры, бульдозеры, погрузчики, автокраны, другие крупно- и малогабаритные спецсредства;
  • железнодорожный транспорт.

Пневматическая тормозная система: устройство и работа

Тягач DAF XF105 — пример грузовика с пневматическими тормозами

Нас интересует именно автомобильный вариант пневматического тормозного привода. В статье мы расскажем о:

  • видах пневматических тормозных систем;
  • конструкции и принципе работы пневмопривода;
  • основных преимуществах и недостатках пневматики в сравнении с гидравлическими тормозами;
  • неисправностях, которые возникают в работе пневмотормозов, признаках и последствиях поломок, а также дадим полезные советы как продлить срок службы тормозной системы.

Классификация пневматических тормозных систем

Пневматический тормозной привод используют отдельно или в комплексе с другими системами (примеры — комбинированные тормозные системы электропневматического или пневмогидравлического типа).

Пневматические тормозные системы также классифицируют по количеству рабочих контуров-магистралей. Встречаются 3 вида систем:

  • одноконтурные;
  • двухконтурные;
  • многоконтурные.

Одноконтурные системы. Особенность — магистрали на передние и задние колеса объединены в одну ветку, а интенсивность потока сжатого воздуха контролирует один тормозной кран. Одноконтурная модель пневматической тормозной системы — устаревший тип конструкции, который в большинстве случаев встречается только на старых моделях грузовых автомобилей и автобусов.

Двухконтурные системы. Отличия понятны из названия — магистрали тормозной системы автомобиля разделены на две ветки. Одна ветка передает сжатый воздух на передние колеса, вторая — на задние.

Поток энергоносителя контролируют два тормозных крана — по одному на каждый контур магистралей. Двухконтурная конструкция надежнее, чем одноконтурная.

Если вышла из строя ветка задней оси, передние тормозные узлы продолжают функционировать и наоборот.

Многоконтурные системы. Особенность — сложная, но эффективная и надежная конструкция. Многоконтурные пневматические системы встречаются в крупных грузовых автомобилях и состоят из трех и больше контуров. Многоконтурная тормозная пневмосистема увеличивает устойчивость, облегчает управление и остановку грузовика.

Конструкция пневматической тормозной системы

Конструкция пневматического тормозного привода примерно одинаковая для всех видов автомобилей. Отличаться могут отдельные узлы и элементы.

Пневматическая тормозная система: устройство и работа

Общий вид пневматической тормозной системы: 1 — двухсекционный тормозной кран, 2, 6 — тормозные камеры (силовые цилиндры), 3 — предохранительный клапан, 4 — регулятор давления, 5 — компрессор, 7 — кран отбора воздуха, 8 и 9 — разобщительный кран с соединительной головкой, 10 — ресиверы (воздушные баллоны), 11, 12 — тормозные барабаны в сборе.

Компрессор. Нагнетает воздух в ресиверах (баллонах). Компрессор устанавливают в переднюю часть автомобиля возле блока двигателя. Агрегат работает от клиновидного ремня, который соединяет шкив компрессора и шкив радиаторного вентилятора.

Ресиверы или баллоны. В ресиверах хранится запас сжатого воздуха. Пневматические тормоза оборудованы двумя ресиверами.

Первый баллон, который в народе называют “мокрым”, оборудован предохранительным клапаном и краном для слива конденсата. На втором ресивере есть только кран для слива конденсата.

Предохранительный клапан, который контролирует давление во втором баллоне, установлен дальше по магистрали в тормозном кране.

Предохранительный клапан. Защищает систему от перегрузки и сбрасывает избыточное давление. Количество защитных клапанов зависит от типа конструкции и количество контуров магистралей.

Регулятор давления. Контролирует и поддерживает оптимальное давление в системе, а при необходимости впускает или выпускает воздух в устройство разгрузки компрессора.

Тормозной кран. Комбинированный поршневой узел, который распределяет потоки сжатого воздуха по системе, последовательно заполняет энергоносителем все контуры пневмосистемы и тормозные камеры. Тормозной кран — связующий узел между ресиверами и тормозными цилиндрами колес. Количество тормозных кранов в пневматической системе зависит от количество контуров.

Осушитель воздуха. Выделяет пары воды и другие примеси (например, пары масла) из всасываемого воздуха. В современных моделях автомобилей осушитель совмещен с регулятором давления, поэтому последний как отдельный узел отсутствует.

Тормозные узлы с силовыми цилиндрами (тормозными камерами). Установлены на колесах автомобиля, отвечают за остановку транспортного средства. Каждый узел оборудован тормозным цилиндром, в который по трубопроводу под давлением поступает воздух и который прижимает тормозные колодки к барабану.

Разобщительный кран. Элемент встречается только в тягачах с прицепами. Через кран пневматическую тормозную систему тягача соединяют с тормозной магистралью прицепа. Кран объединяет две системы, увеличивает устойчивость и управляемость автомобиля, уменьшает риск заноса прицепа при торможении.

Пневмоусилители. Агрегаты увеличивают показатели давления до необходимого уровня и уменьшают нагрузку на компрессор. Количество усилителей отличается в различных моделях автомобилей.

Трубопровод. Система труб и шлангов соединяет все узлы и элементы. Количество ответвлений трубопровода зависит от количества контуров пневматической тормозной системы.

Педаль тормоза. Элемент передает усилие на поршни тормозного крана и открывает каналы для сжатого воздуха от ресиверов на тормозные камеры колес.

Рычаг ручного тормоза.

Измерительные приборы и датчики. Контролирующие элементы, по которым водитель следит за состоянием и работоспособностью тормозной системы.

К ним относятся датчики, которые находятся в ресиверах и тормозных камерах, и двухстрелочный манометр. Одна стрелка манометра показывает давление в баллонах, а вторая — в тормозных камерах.

В старых моделях автомобилей манометров было два и каждый отвечал за свой узел.

Принцип работы и функционал пневматического тормозного привода

Главная и единственная функция любой тормозной системы — вовремя остановить автомобиль не зависимо от условий и внешних факторов. Неважно, нужно плавно остановить авто перед перекрестком или резко затормозить из-за неожиданно возникшей преграды — автомобиль должен остановится без ущерба для водителя, транспортного средства, других участников дорожного движения.

Рассмотрим основные этапы и процессы, которые происходят в пневматической тормозной системе.

Пневматическая тормозная система: устройство и работа

Пневмокомпрессор для автомобилей МАЗ с двигателем OM 906 LA

Компрессор тормозной системы — приводной агрегат, который работает только когда запущен двигатель. Через воздушный фильтр в компрессор поступает воздух, который агрегат через регулятор давления закачивает в ресиверы.

Регулятор давления, который расположен либо как отдельный узел, либо встроен в осушитель, контролирует и оптимизирует давление воздуха, а когда ресиверы заполнены полностью, обеспечивает холостой ход компрессора. Если регулятор давления не работает, его подменяет предохранительный клапан.

Ресиверы системы соединены последовательно. В нижней части первого баллона находится спускной кран, через который из энергоносителя выводится конденсат и пары масла. Второй баллон соединен с краном, который оборудован регулятором давления и предохранительным клапаном. Последние сбрасывают лишний воздух и нормализуют давление в системе, если оно превышает допустимое.

Тормозной кран контролирует и перенаправляет поток сжатого воздуха в камеры силовых цилиндров, которые находятся в тормозных узлах колес.

В одноконтурной системе за передние колеса автомобиля отвечает нижний цилиндр крана, а за задние колеса тягача и колеса прицепа (если есть) — верхний цилиндр.

Пневматические тормоза прицепа присоединяют к автомобилю через разобщительный кран и соединительную головку.

Когда водитель нажимает педаль тормоза, тормозной кран открывает доступ для сжатого воздуха, который из ресиверов поступает в тормозные камеры колес.

В цилиндрах увеличивается давление, разжимные кулаки прижимают колодки к тормозным барабанам колес и останавливают автомобиль.

Когда водитель отпускает педаль, клапаны тормозных камер колес выводя воздух и колодки возвращаются в исходное положение.

Пневматическая тормозная система: устройство и работа

Пневматический барабанный тормозной узел в сборе на автомобиле

Водитель может следить за состоянием пневматической тормозной системы по манометру, который показывают давление сжатого воздуха в ресиверах и тормозных камерах. Манометр соединен с датчиками давления, которые передают данные на приборную панель в кабину водителя.

Преимущества и недостатки пневматики

Пневматическая и гидравлические тормозные системы — это два аналоговых тормозных привода, каждый из которых обладает своими преимуществами и недостатками. Первый тип привода используют в основном в тяжелых автомобилях, а второй чаще встречается на транспортных средствах повседневного использования.

Чем пневматические тормоза лучше гидравлических:

  • когда водитель отпускает педаль тормоза, сжатый воздух не возвращается обратно в систему, а выходит через клапаны сброса в атмосферу;
  • пневматическая система экономичнее, так как использует сжатый воздух, который компрессор забирает из атмосферы;
  • воздух меньше изнашивает систему, чем жидкостный наполнитель;
  • сжатый воздух — нейтральная среда, поэтому вероятность того, что энергоноситель потеряет свойства, гораздо меньше. Гидравлические смеси для тормозных систем сильно отличаются друг от друга по составу, смешивать их нельзя, а вывести из строя систему может любая посторонняя примесь;
  • пневматическая тормозная система легче переносит температурные перепады как окружающей среды, так и внутри системы. Гидравлический энергоноситель может закипеть или замерзнуть от резкого скачка температуры, в результате тормоза ломаются;
  • пневматика меньше боится мелких утечек, так как компрессор работает все время и в случае утечки рабочего газа быстро восполнит недостачу.

Однако и у гидравлики есть свои преимущества:

  • гидротормоз срабатывает быстрее за счет того, что энергоноситель обладает высокой плотностью и не сжимается, как воздух;
  • у гидравлического привода конструкция значительно проще, чем у пневматической тормозной системы
  • гидравлический привод функционирует как отдельная система в отличие от пневматического, в котором работа компрессора зависит от работы двигателя;
  • несмотря на то, что пневматические тормоза срабатывают быстрее, КПД гидравлических тормозов выше за счет меньшей потери энергии при перемещении энергоносителя по трубопроводу.

Ну и самое главное отличие между гидравликой и пневматикой — цена на запчасти и агрегаты. Хотя тяжело сравнивать, например, стоимость тормозного суппорта легкового автомобиля и барабанный тормоз тяжелого тягача, как минимум из-за большой разницы в габаритах и конструкции.

Именно благодаря отличиям между двумя видами тормозных приводов каждый из типов занимает свою нишу и практически не конкурирует с аналогом.

Неисправности пневматической тормозной системы. Причины и признаки поломок. Как продлить срок службы тормозов

Основные неисправности пневматической тормозной системе:

  • тормоза автомобиля не реагируют на нажим педали или реагируют с большим опозданием. Причины — сжатый воздух выходит через трещину в трубопроводе или ресивере, вышел из строя компрессор. Неисправности возникают в результате резкого удара, который повредил пневмосистему, постепенного износа привода, разрыва приводного ремня, который запускает компрессор. Выход — обратиться на диагностику  на станции техобслуживания;
  • увеличился тормозной путь автомобиля. Причины также могут быть разные. Например, разболталась педаль тормоза, износились тормозные колодки или барабаны, поврежден один из контуров магистрали. Неисправности возникают в результате естественного износа, резкого перепада давления или неправильной работы перепускных клапанов и тормозных кранов. Решение — посетите автосервис и пройдите диагностику пневмотормозов;
  • занос прицепа во время торможения. Проблема говорит о неисправности разобщительного клапана, который соединяет пневмосистему тягача и тормозные камеры прицепа. В результате, когда водитель тормозит, воздух поступает только в тормозные камеры, а прицеп продолжает движение. Выходит, что прицеп и тягач начинают двигаться навстречу друг другу, в результате чего прицеп как более длинный и менее устойчивый объект ведет в сторону. Чтобы устранить поломку, достаточно заменить разобщительный кран;
  • автомобиль ведет в сторону при торможении. Причина — тормоза работают несинхронно, колеса тормозят в разное время, и автомобиль может занести. Проблема возникает, когда неравномерно изнашиваются тормозные колодки и барабаны или одна из тормозных камер пропускает воздух.
Читайте также:  Какой должна быть правильная посадка за рулем автомобиля?

Пневматическая тормозная система: устройство и работа

Своевременный ремонт — залог безопасности и комфорта

Чтобы не допустить неисправности, достаточно регулярно проверять состояние тормозной системы автомобиля, следить за показатели манометров и датчиков, вовремя проходить ТО, использовать качественные и подходящие по допускам запчасти, комплектующие и сменные узлы. Именно от отношения водителя к автомобилю зависит срок службы транспортного средства. Это правило, которые должен знать и соблюдать каждый водитель независимо от того, на чем ездит человек — на легковушке или тягаче с прицепом.

Источник: https://steering.com.ua/blog/pnevmaticheskaya-tormoznaya-sistema-105

Пневматический привод тормозов автомобиля

Пневматический привод колесных тормозов состоит из компрессора 1, воздушного баллона 7, манометра 6, тормозного крана 21, приводимого в действие педалью 26, тормозных камер 11, регулятора давления 28, предохранительного клапана 5 и трубопроводов 4, 27 и 9 с гибкими шлангами 10.

Привод тормозов колес осуществляется непосредственно тормозными камерами с помощью сжатого воздуха, запас которого содержится в воздушных баллонах.

Тормозная камера 11 состоит из корпуса с крышкой, между которыми зажата гибкая резино-тканевая диафрагма 17. Диафрагма опирается на шайбу, закрепленную на штоке 13. Шайба вместе с диафрагмой отжимается в исходное левое положение пружинами 12.

Шток диафрагмы соединен с рычагом 16 разжимного кулака. Тормозная камера через отверстие в крышке камеры, гибкий шланг 10 и трубопровод 9 соединяется с тормозным краном.

Тормозной кран служит для управления тормозами. В корпусе тормозного крана установлена гибкая металлическая диафрагма 20.

Под диафрагмой размещается коромысло 19, посредством которого диафрагма воздействует своим штоком на впускной 25 и атмосферный 18 клапаны. Корпус крана закрыт крышкой, в которой установлен свободно толкатель 23, опирающийся через пружину 22 на диафрагму.

Рычаг 24 установлен на оси. Рычаг коротким концом через регулировочный болт может воздействовать на толкатель 23.

Пневматический привод тормозов работает следующим образом.

При нажатии на педаль 26 ножного тормоза рычаг 24 поворачивается вокруг оси и через регулировочный болт нажимает на толкатель 23. Толкатель воздействует через пружину 22 на диафрагму 20 и прогибает ее вниз.

Коромысло 19 под воздействием диафрагмы перемещается вниз и приводит в действие клапаны. Атмосферный клапан 18 закрывается, а впускной 25 открывается и сообщает внутреннюю полость крана под диафрагмой с воздушным баллоном.

При этом сжатый воздух из баллона поступает через кран в тормозную камеру 11. В тормозной камере создается давление, под воздействием которого диафрагма 17, сжимая пружины 12, смещается вправо и через шток 13 и соединенный, с ним рычаг 16 поворачивает разжимной кулак. Разжимной кулак, поворачиваясь, раздвигает колодки, которые прижимаются к тормозному барабану, происходит торможение колеса.

Пневматическая тормозная система: устройство и работа

Рис.

Схема пневматического привода тормозов: 1 — компрессор; 2 — поршни компрессора; 3 — воздушный фильтр; 4, 9 и 27- трубопроводы; 5 — предохранительный клапан; 6 — манометр; 7 — воздушный баллон; 8 — кран для выпуска конденсатора; 10 — гибкий соединительный шланг; 11 — тормозная камера; 12 — пружина; 13 — шток диафрагмы; 14 — тормозные колодки; 15 — разжимной кулак; 16 — рычаг разжимного кулака; 17 — диафрагма; 18 — атмосферный клапан; 19 — коромысло; 20 — диафрагма тормозного крана; 21 — тормозной кран; 22 — пружина; 23 — толкатель; 24 — рычаг; 25 — впускной клапан; 26 — педаль ножного тормоза; 28 — регулятор давления

Тормозной кран является одновременно редуктором, поддерживающим определенное давление воздуха в тормозных камерах при торможении. Когда давление воздуха в полости под диафрагмой станет больше необходимой для нормального торможения величины, диафрагма, сжимая пружину. 22, приподнимется и впускной клапан прикроется, поступление воздуха из баллона прекратится.

Когда педаль тормоза отпущена, диафрагма тормозного крана поднимается и прекращается воздействие коромысла 19 на клапаны.

Под действием пружин впускной клапан 25 закроется, а атмосферный 18 — откроется. Полость тормозного крана разобщится с воздушным баллоном и сообщится с атмосферой.

Находящийся в тормозной камере сжатый воздух начнет выходить через тормозной кран в атмосферу.

Давление в тормозной камере резко снижается и диафрагма, возвращаясь под действием пружин 12 в первоначальное положение, повернет разжимной кулак в обратном направлении. Тормозные колодки под действием стяжной пружины отойдут от тормозного барабана, и торможение колес прекратится.

Необходимый для работы тормозного привода сжатый воздух нагнетается в баллоны пневматической системы автомобиля компрессором.

Компрессор представляет собой двухцилиндровый поршневой насос, устанавливаемый на кронштейне, прикрепленном к головке блока цилиндров двигателя.

Поршни 12, установленные в цилиндрах компрессора, через шатуны 15 соединены с коленчатым валом 17. Коленчатый вал компрессора приводится во вращение от коленчатого вала двигателя ременной передачей.

При вращении коленчатого вала поршни поочередно перемещаются вниз, создавая в цилиндрах разрежение. Когда поршень подойдет к нижней мертвой точке, он откроет впускные окна 13 в стенке цилиндра, соединив тем самым полость цилиндра с атмосферой, через воздушный фильтр 3 атмосферный воздух заполнит цилиндр.

При движении вверх поршень перекрывает впускные окна и сжимает воздух.

Пневматическая тормозная система: устройство и работа

Рис.

Компрессор: 1 — головка блока цилиндров компрессора; 2 — диафрагма; 3 — грибок; 4 — коромысло; 5 — спиральная пружина; 6 — разгрузочная камера; 7 — перепускная камера; 5 — регулировочный болт перепускного клапана; 9 — перепускной клапан; 10 — регулировочный болт нагнетательного клапана; 11 — нагнетательный клапан; 12— поршень; 13 — впускное окно; 14 — палец поршня; 15 — шатун; 16 — шарикоподшипник; 17 — коленчатый вал; 18 — блок цилиндров компрессора

Сжатый в цилиндрах воздух через нагнетательные клапаны 11 поступает по трубопроводу в воздушный баллон. Детали компрессора смазываются маслом, подаваемым из системы смазки двигателя по трубопроводу в торец коленчатого вала компрессора.

К шатунным подшипникам масло подводится по каналам, просверленным в коленчатом валу, а к поршневым пальцам — через каналы в шатунах.

Стенки цилиндров и коренные подшипники смазываются разбрызгиванием. Стекающее с деталей масло собирается в нижней части картера компрессора и по трубопроводу стекает в картер двигателя.

Головка 1 блока цилиндров компрессора охлаждается жидкостью, поступающей по трубопроводу из системы охлаждения двигателя.

Компрессор снабжен разгрузочным устройством, размещенным в головке блока его цилиндров, которое обеспечивает холостой ход компрессора при повышении давления в пневматической системе выше необходимого и регулирует количество и давление нагнетаемого в систему воздуха.

В разгрузочной камере 6 помещена диафрагма 2, на которую опирается грибок 3. На стержень грибка в свою очередь опирается коромысло 4, которое своим вильчатым концом может воздействовать на два перепускных клапана, открывая их.

При этом цилиндры компрессора сообщаются между собой.

Полость разгрузочной камеры под диафрагмой соединена трубопроводом с регулятором давления. Регулятор давления состоит из корпуса 9, шариковых клапанов 8 и пружины 3.

Совместная работа разгрузочного устройства и регулятора давления заключается в следующем.

Для обеспечения нормальной работы тормозов давление воздуха в системе пневматического привода должно поддержираться в пределах 6—7 кг/см2, что осуществляется с помощью регулятора давления и разгрузочного устройства компрессора.

Когда давление в пневматической системе станет выше 7 кг/см2, шариковые клапаны 8 регулятора давления, сжимая через шток 5 пружину 3, приподнимутся, открывая отверстие в нижнем гнезде и перекрывая отверстие в верхнем гнезде клапанов.

При этом воздух из баллона направится к компрессору, поступая в полость под диафрагмой 2 разгрузочного устройства. В разгрузочной камере 6 создается давление, под действием которого диафрагма 2 прогибается вверх и приподнимает грибок 3.

Грибок своим стержнем воздействует через коромысло 4 на стержни перепускных клапанов. Клапаны открываются и сообщают между собой цилиндры. Воздух при сжатии переходит из одного цилиндра в другой.

В результате давление в цилиндре оказывается недостаточным, чтобы открыть нагнетательный клапан, и воздух не подается в пневматическую систему автомобиля.

Пневматическая тормозная система: устройство и работа

Рис.

Регулятор давления: 1 — кожух; 2 — регулировочный колпак; 3 — пружина регулятора; 4 — упорный шарик пружины; 5 — шток клапана; 6 — гайка регулировочного колпака; 7 — седло регулятора; 8 — шариковые клапаны; 9 — корпус; 10 — фильтр; 11 — штуцер; 12 — канал

Когда давление в системе станет меньше 6 кг/см2, под действием пружины 3 регулятора давления шариковые клапаны 8 опустятся вниз, перекроют отверстие в нижнем гнезде и откроют — в верхнем. Поступление воздуха из баллона к компрессору прекратится, а находящийся в разгрузочной камере воздух через канал 12 в регуляторе давления выйдет в атмосферу.

Давление в разгрузочной камере снизится до атмосферного, и перепускные клапаны под действием пружин закроются. Компрессор начнет нагнетать воздух в баллоны.

Для предохранения от чрезмерного давления воздуха в случае неисправности регулятора давления в пневматической системе имеется предохранительный клапан. Он отрегулирован так, что при достижении давления воздуха в системе 9—10 кг/см2 шарик 6 приподнимается, сжимая пружину 4, и воздух из пневматической системы через отверстие в корпусе клапана выходит в атмосферу.

Пневматическая тормозная система: устройство и работа

Рис.

Предохранительный клапан: 1 — регулировочный винт; 2 — контргайка; 3 — стержень клапана; 4 — пружина; 5 — корпус; 6 — шарик клапана

Давление в пневматической системе контролируется манометром, установленным на приборном щитке в кабине автомобиля.

Источник: https://ustroistvo-avtomobilya.ru/tormoznaya-sistema/pnevmaticheskij-privod-tormozov-avtomobilya/

Устройство автомобилей



Пневматический привод широко используется в тормозной системе тягачей, грузовых автомобилей средней и большой грузоподъемности и автобусов. В тормозной системе с пневматическим приводом тормозные механизмы включаются за счет использования энергии сжатого воздуха.

Первая пневматическая тормозная система была запатентована американцем Д. Вестингаузом в 1872 году и предназначалась для использования в железнодорожном транспорте. Изобретение пневматического привода стало поистине революционным для железных дорог, обеспечивая надёжное торможение поездов в автоматическом режиме, что позволило существенно увеличить массу и скорость железнодорожных составов.

Для автомобилей пневмопривод тормозов впервые был предложен американским инженером Д. Стартевентом в 1904 г., но в серийном автомобильном производстве стал применяться лишь в сороковых годах прошлого столетия.

Причиной, по которой инженеры-конструкторы обратили на пневмопривод более пристальных взор — стремительный рост мощности, производительности и грузоподъемности автотранспортных средств, передвигавшихся, к тому же, все более стремительно.

Применявшиеся в те годы гидравлические и механические приводы не могли обеспечить надежное и эффективное торможение тяжелых автомобилей, и уж тем более — автопоездов.

В гидравлическом приводе без специальных усилителей величина тормозных усилий на исполнительных элементах тормозных механизмов лимитируется физическими возможностями человека, а с использованием гидровакуумных и вакуумных усилителей – размерами вакуумной диафрагмы, которая, при необходимости создания значительных усилий, разрасталась до огромных габаритов, негативно влияя на компоновку автомобиля. Кроме того, увеличение усилия, передаваемого гидроприводом, влечет за собой существенное повышение давления жидкости в нем, что создает дополнительную опасность разгерметизации системы, т. е. снижает ее надежность. И если незначительные утечки воздуха в пневмоприводе не влияют на его работоспособность, то для гидропривода они губительны, приводя к отказу системы.

Читайте также:  Фаркоп imiola - виды и особенности эксплуатации

Пневматическая тормозная система: устройство и работа

Увеличение интенсивности дорожного движения и возросшие скорости ужесточают требования к тормозным системам автомобилей и автопоездов. Они регламентируются международными требованиями, государственными стандартами и отраслевыми нормативными документами.

  • По этим причинам на автомобилях полной массой более 9 тонн применяют пневматический привод тормозных механизмов, который может создавать практически неограниченное приводное усилие со стороны тормозных механизмов, обеспечивая эффективное торможение автотранспортных средств любой массы и на любой скорости.
  • Следует отметить, что пневматические тормозные системы отечественных автомобилей не уступают, а по некоторым показателям даже превосходят аналоги ведущих зарубежных фирм.
  • ***

Преимущества и недостатки пневматического привода

Широкое распространение пневматического привода транспортных средств объясняется целым рядом преимуществ:

  • возможность создания больших разжимных сил на тормозных колодках при малом усилии на педали управления;
  • доступность, дешевизна и безопасность рабочего тела для работы пневмопривода (обычный атмосферный воздух);
  • возможность накопления большого количества потенциальной энергии сжатого воздуха в специальных баллонах-аккумуляторах (ресиверах), позволяющей долго и эффективно тормозить даже при отказе основного источника энергии (компрессора);
  • допустимость незначительных естественных утечек сжатого воздуха из-за негерметичности (незначительные утечки компенсируются запасом сжатого воздуха и компрессором);
  • простота и удобство соединения магистралей при составлении автопоезда;
  • достаточно высокий КПД (0,8…0,85);
  • возможность использования энергии сжатого воздуха для привода различных вспомогательных устройств и оборудования автомобиля (пневматический звуковой сигнал, стеклоочистители, привод дверей автобуса, привод переключения КПП, усилитель сцепления, подкачка шин и т. п.).

Недостатками пневматического привода являются:

  • большое время срабатывания вследствие медленного поступления сжатого воздуха к удаленным воздухонаполняемым объемам через трубопроводы с малым диаметром, а также из-за свойства сжимаемости воздуха (как и любого газа);
  • сложность конструкции и высокая стоимость (особенно многоконтурного привода);
  • большие масса и габариты приборов пневмопривода по сравнению с гидроприводом;
  • существенные затраты мощности на привод компрессора;
  • возможность выхода пневмопривода из строя при замерзании конденсата в трубопроводах и аппаратах при отрицательных температурах.

Обеспечивая высокое усилие, пневматический привод имеет массу, значительно превышающую массу эквивалентного по эффективности гидравлического привода, а также заметно дороже его. Так, например, на одиночном автомобиле марки «КамАЗ» пневмопривод содержит до 25 приборов и аппаратов, до шести ресиверов и примерно 70 м трубопроводов. Очевидно, что стоимость такого привода достаточно высокая.

Время срабатывания пневматического привода весьма продолжительное – у одиночных автомобилей оно составляет 0,4…0,7 сек, а у автопоездов может достигать 1,5 сек. Время растормаживания достигает 1,2 сек. Исходя из этого, можно сделать вывод, что по быстродействию пневматический привод в 5…10 раз медленнее гидравлического привода.

***

Общее устройство пневматического привода тормозов

На рис. 1 изображена схема пневматического привода тормозов автомобиля ЗИЛ-433100. Для детального ознакомления со схемой необходимо щелкнуть мышкой по рисунку 1. Увеличенное изображение схемы с пояснениями к номерам позиций откроется в отдельном окне браузера.

Основными элементами пневматического привода являются компрессор 1, ресиверы (воздушные баллоны) 9, 10, 11, 22, 23, хранящие запас сжатого воздуха, кран управления 18, магистрали и исполнительные элементы, воздействующие на разжимные устройства тормозных механизмов. В качестве таких исполнительных устройств обычно используют тормозные камеры 2, 29 диафрагменного типа.

Пневматическая тормозная система: устройство и работа

Кроме основных элементов, пневматический привод современного автотранспортного средства включает различные дополнительные приборы и устройства, обеспечивающие его надежное функционирование, как в одиночном автомобиле, так и в составе автопоезда.



Все приборы пневматического тормозного привода делятся на следующие группы: питающие, приборы управления, регулирующие, исполнительные.

Питающие приборы подготавливают энергоноситель (сжатый воздух) к работе и распределяют его по контурам. Сюда относятся компрессор с регулятором давления воздуха, устройство, предохраняющее конденсат от замерзания, трубопроводы и различные соединительные элементы, в том числе и для присоединения пневмопривода тягача к пневмоприводу прицепа (полуприцепа).

  1. К приборам управления относятся тормозные краны всех систем (рабочей, стояночной, запасной, вспомогательной), а также краны и клапаны управления тормозными системами прицепа или полуприцепа.
  2. К регулирующим приборам относятся регуляторы тормозных сил, ускорительные клапаны, клапаны быстрого растормаживания.
  3. К исполнительным приборам относятся тормозные камеры и пружинные энергоаккумуляторы.

Принцип действия пневматического привода тормозных механизмов достаточно прост – при торможении автомобиля (нажатие на тормозную педаль) кран соединяет ресиверы с магистралями, устанавливая в них давление воздуха, пропорционально силе, приложенной водителем к тормозной педали.

При снятии усилия с тормозной педали кран отсоединяет магистрали от ресиверов и соединяет их с окружающей средой, выпуская сжатый воздух из системы. Подобно гидравлическому, пневматический привод разделяется на контуры, причем каждый отдельный контур оснащается своим ресивером с запасом сжатого воздуха и управляется отдельной секцией крана.

Это необходимо для повышения надежности привода и сохранения управляемости автомобилем в случае разгерметизации или отказа одного из контуров.

Одноконтурный пневматический привод прост по конструкции, но современные требования к безопасности движения исключают его использование на автомобилях из-за низкой надежности.

Поэтому на современных автомобилях применяются многоконтурные приводы, и помимо двух обязательных контуров рабочей тормозной системы применяют несколько независимых контуров других тормозных систем.

Так, пневматический тормозной привод автомобиля КамАЗ-4310 имеет шесть независимых контуров:

  • контур питания потребителей сжатым воздухом;
  • контур привода тормозных механизмов передних колес;
  • контур привода тормозных механизмов задних колес;
  • контур привода стояночной тормозной системы;
  • контур привода вспомогательной тормозной системы;
  • контур аварийного растормаживания стояночной тормозной системы.

Кроме того, имеется целый ряд приборов, обеспечивающих работу привода тормозных механизмов прицепа и осуществляющих контроль над состоянием элементов тормозного привода. Аналогичной тормозной системой осуществляются современные модели автомобилей ЗиЛ, МАЗ, КрАЗ и др.

***

Особенно удобен пневматический привод для использования на автопоездах. Исполнительные механизмы привода тормозной системы прицепа (или полуприцепа) питаются от установленных на них отдельных ресиверов посредством дополнительного крана, который называется воздухораспределителем.

Пневматическая тормозная система: устройство и работа

Соединение тормозных систем тягача и прицепа может быть однопроводным или двухпроводным.

При однопроводном приводе прицеп соединен с тягачом с помощью одной магистрали, через которую осуществляется как наполнение ресиверов прицепа сжатым воздухом, так и передача на прицеп команд на торможение с заданной водителем интенсивностью.

Преимуществом однопроводного тормозного привода прицепных автотранспортных средств является его простота, а также то, что при отрыве прицепа от тягача он автоматически, без применения дополнительных устройств, затормаживает прицеп вследствие того, что давление в разорвавшейся соединительной магистрали падает до нуля.

В двухпроводном приводе посредством одной магистрали, связывающей тягач с прицепом (полуприцепом), постоянно пополняется запас сжатого воздуха в ресиверах прицепа. Эта магистраль называется питающей. Другая магистраль (управляющая) управляет воздухораспределителем прицепа. Давление воздуха в управляющей магистрали изменяется пропорционально изменению давления в тормозных магистралях тягача.

Двухпроводный привод обладает рядом преимуществ по сравнению с однопроводным:

  • обеспечение лучшего согласования торможения тягача и прицепа благодаря одинаковому давлению сжатого воздуха в ресиверах тягача и прицепа:
  • повышение эффективности работы тормозов прицепа и уменьшение времени их срабатывания;
  • при частых торможениях тормозная система прицепа с двухпроводным приводом эффективно пополняет запас сжатого воздуха в ресивере, поддерживая постоянство рабочего давления.

Автомобильные фирмы США, а также большинства европейских стран применяют на прицепах двухпроводный привод тормозных систем.

В Германии получил распространение комбинированный привод (одно- и двухпроводный), а отдельные фирмы Великобритании и Франции используют трехпроводной привод управления тормозами прицепа.

При этом третий контур используется в качестве запасного контура тормозной системы прицепа.

Клапаны управления тормозными системами прицепов с двухпроводным приводом и с однопроводным приводом являются аппаратами управления тормозными системами прицепов. Они устанавливаются на автомобилях-тягачах.

***

Комбинации тормозных приводов

На длиннобазовых автомобилях и тягачах большегрузных автопоездов часто используются комбинированный гидропневматический привод тормозных механизмов.

В таком приводе для увеличения тормозных усилий используется энергия сжатого воздуха, а передача их к тормозному механизму осуществляется жидкостью.

Использование гидропневматического привода позволяет увеличить скорость его срабатывания, но приводит к усложнению конструкции тормозной системы.

Некоторые прицепы могут снабжаться электромагнитным клапаном, который служит для управления подачей сжатого воздуха к тормозным камерам, выполняя функцию крана-распределителя, а также для включения тормозной системы прицепа при торможении автомобиля вспомогательной тормозной системой (моторным или специальным тормозом-замедлителем).

При подаче электрического сигнала электромагнитному клапану от тягача он обеспечивает поступление сжатого воздуха из ресивера к тормозным камерам, а при прекращении управляющего сигнала открывает доступ магистрали к внешней среде, сбрасывая давление в ней.

Такая конструкция относится к электропневматическим комбинированным тормозным приводам.

***

Комбинированный тормозной привод Многоконтурный пневматический тормозной привод



Главная страница

Специальности

Учебные дисциплины

Олимпиады и тесты

Источник: http://k-a-t.ru/avto_shassi_2/7-tormoza_8/index.shtml

Назначение и общее устройство пневматического привода тормозов

Пневматический привод предназначен для управления впуском и выпуском сжатого воздуха, приводящего в действие тормозные механизмы.

Он применяется на автомобилях и автопоездах средней, большой и особо большой грузоподъемности, так как использование энергии двигателя, аккумулированной в давлении сжатого воздуха, позволяет существенно облегчить труд водителя.

Мускульная энергия последнего затрачивается лишь на процесс управления впуском и выпуском сжатого воздуха.

Другими преимуществами пневматического привода являются: точность слежения, обеспечивающего пропорциональность интенсивности торможения (замедления) величине усилия, приложенного к тормозной педали; возможность управления тормозами прииепа на обеспечение желаемой разницы между режимами торможения прицепа и тягача. Однако по сравнению с гидравлическим пневматический привод конструктивно сложнее и дороже, обладает меньшим (в 10—15 раз) быстродействием, имеет большую массу и габариты.

Использование энергии сжатого воздуха возможно только при включении в привод приборов со следящим действием, которые позволяют воспроизводить (отслеживать) закономерность изменения давления в исполнительных механизмах в зависимости от усилия, приложенного к органу управления. От величины давления в исполнительных механизмах зависят усилия, приводящие в действие тормозные механизмы.

Источником энергии сжатого воздуха является компрессор. Приборами следящего действия — диафрагменные или поршневые тормозные краны. Исполнительными механизмами — поршневые цилиндры или диафрагменные камеры.

Рекламные предложения на основе ваших интересов:

Тормозные краны регулируют передачу энергии от источника к тормозным камерам или цилиндрам. По принципу работы они подразделяются на краны прямого и обратного действия.

Тормозные краны прямого действия пропускают сжатый воздух из воздушных баллонов в тормозные камеры, увеличивая давление в них.

Читайте также:  Объем топливного бака рено дастер - это образец надежности

Тормозные краны обратного действия выпускают сжатый воздух из тормозных камер, снижая давление в них.

В зависимости от принципа взаимосвязи с прицепами пневматический привод может быть одно- и двухпроводным. Применительно к отечественному автотранспорту стандартизован однопроводный привод.

При однопроводном приводе соединение тормозной системы тягача с тормозной системой прицепа (полуприцепа) осуществляется одним гибким трубопроводом, который используется как в качестве питающего (зарядка баллонов прицепа сжатым воздухом), так и в качестве магистрали управления интенсивностью торможения прицепа.

Двухпроводный привод имеет два гибких шланга, соединяющих тормозные системы тягача и прицепа. По одному из шлангов непрерывно подзаряжаются сжатым воздухом воздушные баллоны, по прицепа осуществляется управление интенсивностью торможения

В работе магистралей управления однонроводного и двухпроводного приводов имеются принципиальные отличия. При одно-и шлангов, соединяющих эти аппараты, и трубопровода от нижней секции тормозного крана к нижней секции клапана управления тормозами прицепа с двухпроводным приводом.

  • Контур привода тормозов колес задней тележки рабочей тормозной системы и прицепа состоит из части тройного защитного клапана, воздушного баллона емкостью 40 л, верхней секции двухсекционного тормозного крана, автоматического регулятора торможения, четырех тормозных камер, клапана контрольного вывода, трубопроводов и шлангов, соединяющих эти аппараты, и трубопровода от верхней секции тормозного крана к верхней секции клапана управления тормозами прицепа с двухпроводным приводом.
  • Контур привода тормозов стояночной и запасной систем и прицепа, а также питания комбинированного привода тормозов прицепа (полуприцепа) состоит из части двойного защитного клапана, двух воздушных баллонов общей емкостью 40 л, клапана контрольного вывода, ручного тормозного крана, ускорительного клапана, части двухмагистрального перепускного клапана, четырех пружинных энергоаккумуляторов, трубопроводов и шлангов между аппаратами, трубопровода от ручного тормозного крана к средней секции клапана управления тормозами прицепа с двухпроводным приводом и трубопровода от воздушного баллона к одинарному защитному клапану для питания привода тормозов прицепа.
  • Контур привода заслонок моторного тормоза-замедлителя вспомогательной тормозной системы и питания потребителей состоит из части двойного защитного клапана, воздушного баллона емкостью 40 л, клапана контрольного вывода, пневматического крана, двух цилиндров привода заслонок моторного тормоза-замедлителя, цилиндра привода выключения подачи топлива, трубопроводов и шлангов между аппаратами.
  • От контура привода вспомогательной тормозной системы сжатый воздух поступает к дополнительным (нетормозным) потребителям: стеклоочистителям, пневмосигналу, пневмогидравлическому усилителю сцепления, управлению агрегатами трансмиссии и пр.
  • Контур привода системы аварийного растормаживания тормозов стояночной тормозной системы состоит из части тройного защитного клапана, пневматического крана, части двухмагистрального перепускного клапана, трубопроводов и шлангов, соединяющих аппараты.
  • Питание привода системы аварийного растормаживания тормозов стояночной тормозной системы осуществляется из воздушных баллонов контуров рабочей тормозной системы.
  • Питание привода тормозов прицепа осуществляется из воздушного баллона контура привода стояночной и запасной тормозных систем.

Рекламные предложения:

Читать далее: Устройство и работа приборов системы питания пневматического привода тормозов сжатым воздухом

Категория: — Автомобили Камаз Урал

Главная → Справочник → Статьи → Форум

Источник: http://stroy-technics.ru/article/naznachenie-i-obshchee-ustroistvo-pnevmaticheskogo-privoda-tormozov

Принципы работы пневматической тормозной системы

Каждый водитель без труда назовет массу отличий грузового автомобиля от легковой машины. Будут упомянуты вес, диски тормозные, габариты, величина шин и многое другое, однако основное отличие состоит именно в техническом устройстве машин.

У современных грузовых транспортных средств довольно сложная «начинка» и тормозная система не является исключением. Прежде всего, эта система работает по принципу пневматики, что в корне отличает ее от системы тормозов легкового автомобиля. Стоит отметить, что данная система грузовика является одним из важных составляющих безопасности всех участников дорожного движения.

Как работает пневматическая тормозная система грузового автомобиля?

Принцип использования силы сжатого воздуха – вот то, что лежит в основе функционирования пневматической тормозной системы. Этот воздух находится в прочных баллонах, его нагнетание осуществляется посредством специального мощного компрессора. Подобным принципом работы пневматическая тормозная система отличается от прочих систем.

Схема работы тормозной системы грузовика, основанной на пневматике, заключается в следующем. Компрессор из баллонов подает сжатый под давлением воздух в определенном количестве.

Давление в тормозных камерах создается после того, как нажатие на тормозную педаль передает усилие к тормозному крану.

После того как педаль тормоза отпускается, происходит ослабление рычага, вследствие чего процесс нагнетания давления приостанавливается.

Пневматическая тормозная система грузовика: работа в деталях

Чтобы понять, как работает пневматика на грузовом транспортном средстве, имеет смысл несколько углубиться в ее принцип действия.

Как только автомобиль начинает движение, его тормозная система также начинает делать свою работу, а именно: нагнетать воздух в резервуары. Важная деталь: тормозная педаль в это время обязательно должна быть отпущена.

После того, как в баллоны поступит достаточный объем сжатого воздуха, он устремится к тормозному крану. При условии, что грузовой автомобиль оснащен прицепом, воздух будет поступать по системе также и в резервуары прицепа, благодаря чему получится непрерывный контакт всех систем автомобиля.

После того, как будет нажата педаль тормоза, открывается тормозной кран после перекрытия ряда секция тормозного узла. В этот момент сжатый воздух под давлением начинает поступать в пневматические камеры, что влечет за собой торможение транспортного средства.

Стоит обратить внимание на тот факт, что приведение в действие тормозов прицепа осуществляется именно верхней секцией системы. Нижняя секция тормозной системы, в свою очередь, является ответственной за остановку самого грузовика, который исполняет роль тягача.

Стоит рассмотреть данный принцип более детально.

После того как сжатый воздух поступил в пневматические камеры, диафрагма начинает под его воздействием продавливаться, сжимая при этом встроенную внутри нее пружину.

Следом давление на себе ощущает толкатель и, наконец, основное усилие принимает на себя рычаг разжимного кулачка системы. Валик, расположенный на этой небольшой детали, поворачиваться, разводя в разные стороны тормозные колодки. Благодаря этому процессу автомобиль тормозит.

Из чего состоит пневматическая тормозная система грузового транспортного средства?

Пневматическая тормозная система грузовика состоит из нескольких важных элементов, позволяющих работать узлу бесперебойно. Итак, состав пневматической тормозной системы – это:

  • привод управления (элементы пневмопривода), которые позволяют производить намеренное или автоматическое регулирование ряда деталей энергетического привода;
  • энергетический привод представляет собой набор элементов пневматической тормозной системы грузовика, обеспечивающих обогащение привода управления воздухом, который находится под давлением.
  • тормоз является практически главным в данной системе, так как именно в нем сосредоточены все силы, которые обеспечивают сопротивление несанкционированному движению транспортного средства в одну из сторон. В свою очередь, тормоз пневматический системы делится на следующие типы:

1. Фрикционный.

Срабатывает во время соприкосновения двух движущихся навстречу друг другу элементов тормозной системы грузовика;

2. Электрический.

Торможение осуществляется во время возникновения силы трения под воздействием электромагнитного поля;

3. Гидравлический.

В центре внимания опять два следующие навстречу друг другу объекта системы, взаимодействие между которыми возникает во время увеличения давления в жидкости;

4. Моторный.

Кинетическая сила передается на колеса транспортного средства, которая возникает благодаря возрастающей тормозящей величине.

  • Компрессор — устройство, известное современным людям из их же быта. Привычные всем холодильники также работают на компрессорах. Суть функционирования данного прибора заключается в его работе по типу воздушного насоса, который отвечает за поступление в тормозную систему воздуха в должном объеме. Кроме того, компрессор является ответственным за регулировку давления воздуха внутри системы.

В составе компрессора тормозной пневматической системы есть специальный регулятор, следящий за давлением, то есть подающий сжатый кислород компрессором.

Это необходимо делать для того чтобы параметры не превышали заданные разработчиками пределы. При сбое в работе датчика, велик риск сбоя всей системы.

А это прямой путь к неисправности тормозной пневматической системы грузового транспортного средства.

  • Осушитель воздуха расположен непосредственно в компрессоре, главная миссия которого заключается в подготовке воздуха, поступающего в пневматическую систему. В процессе осушения из воздуха испаряются молекулы влаги, масляные отложения, загрязнения, вредные примеси и т. д.

Стоит также отметить, что практически все осушители воздуха, интегрированные в современные пневмосистемы, не только выполняют свою прямую обязанность, но и осуществляют процесс регенерации.

  • Предохранитель от замерзаний – это еще один довольно интересный агрегат, которым часто оснащаются пневматически тормозные системы грузовиков. Как правило, это транспортные средства с внушительной комплектацией.

В чем заключается принцип работы этого элемента системы тормозов? По своей сути он довольно прост. Этот агрегат в холодное время года вводит особый химический состав в резервуары со сжатым воздухом. Это позволяет не замерзать конденсату в морозы, что не создаст дополнительных проблем в работе пневматической тормозной системы.

Неисправности пневматической тормозной системы грузовика и причины их возникновения

После знакомства с основными комплектующими тормозной пневмосистемы грузового транспортного средства и детального рассмотрения принципа их работы, следует рассмотреть и возможные неисправности, которые, увы, встречаются нередко. Не лишним также будет упомянуть и о том, что подавляющее число этих неисправностей похоже на поломки в других видах тормозных систем. Итак, вот основные три:

  • Во время нажатия педали тормоза не происходит никакой реакции системы. Эта неприятность может случиться по причине нехватки воздуха, который поступает из баллонов. При возникновении данной проблемы следует незамедлительно осуществить диагностику компрессора, для того чтобы можно было исправить ошибку в самое ближайшее время.
  • Слишком длинный тормозной путь грузовика. Все дело в плохо отрегулированной тормозной педали (деталь разболталась). Следует обратиться за помощью на одну из станций технического обслуживания, где решаются подобные проблемы. Там же можно проверить и рычаги тормозные.
  • 3Несинхронная работа тормозов. Главная причина возникновения этой неисправности состоит в разбеге зазоров, которые имеются на тормозных накладках. Решение проблемы – регулировка тормозной пневмосистемы в на СТО.

Разумеется, список неполадок и сбоев в работе пневматической тормозной системы грузового автомобиля на порядок больше, однако вышеперечисленные встречаются чаще остальных. Так или иначе, если водитель замечает какое-то нарушение в привычной работе тормозов, нужно сразу же обратиться за квалифицированной помощью специалистов.

Пневматическая тормозная система грузового автомобиля должна быть исправна!

Совершенно ясно, что система тормозов грузовика является одним из наиболее важных его механизмов.

Вместе с тем, это и довольно сложная система, которая позволяет осуществлять торможение негабаритных и очень тяжелых грузовых транспортных средств.

А это означает, что каждый водитель должен знать основной принцип ее устройства и функционирования. Эта важная информация позволит в одной из форс-мажорных ситуация среагировать быстро и правильно.

Источник: https://bat-parts.com/articles/2339/

Ссылка на основную публикацию