Планетарный редуктор, устройство и расчет

Двухступенчатый планетарный редуктор представляет собой конструкцию, составленную из шестеренок и других рабочих элементов, которые приводятся в движение посредством зубчатой передачи. При этом двигаются они по принципу, который заложен в механике вращения планет – вокруг одного центра.

По этой причине центральная шестерня именуется «солнечной», промежуточные — «сателлитами», а внешняя с внутренним зубчатым сцеплением — «коронной». Кроме этого, самый простой планетарный редуктор состоит из водила.

Оно предназначено для фиксации сателлитов относительно друг друга, чтобы они двигались вместе.

Планетарный редуктор, устройство и расчет

Для правильной работы устройства необходимо, чтобы одна из составляющих его частей была жестко закреплена на корпусе. В планетарном редукторе, который оснащен водилом, статической частью является именно оно.

Кроме этого, жестко закрепленным может быть коронная или солнечная шестеренки.

  В случае если ни одна из частей этого устройства не закреплена, имеется возможность расщепления одного движения на несколько, либо слияние двух в одно.

При этом в сцепке с ведущим и ведомым валом может быть как коронная, так и солнечная шестерни, или сателлиты. Этот механизм может осуществлять повышение передаточного числа и снижение крутящего момента и на оборот.

За счет такой конструкции обеспечивается движение ведомого и ведущего валов в одном направлении.

Планетарный редуктор, устройство и расчет

Назначение и конструкция редуктора

Служит редуктор для обеспечения понижения передачи и при этом повышения силы крутящего момента. Для обеспечения работы этого механизма вращающийся вал присоединяется к его ведомому элементу.

Это устройство в классическом исполнении состоит из червячных или зубчатых пар, центрирующих подшипников, различных уплотнений, сальников и т.д. Примером планетарного редуктора является шариковый подшипник.  Корпус устройства сложен из двух элементов:

Смазка всех составных элементов этого устройства производится путем разбрызгивания масла, но в некоторых особенных устройствах это осуществляется при помощи масляного насоса в принудительном порядке.

Принцип работы

То, как будет функционировать этот агрегат зависит от кинематической схемы привода. Так подводку вращательного движения можно осуществлять к любому элементу этой системы, а снятие производить с какого-либо из оставшихся. Передаточное число зависит от того, согласно какой схемы организована подводка и съем вращательного движения.

Понимание того, как работает подобный редуктор, позволяет оценить сложность ремонта и восстановления.

Планетарный редуктор, устройство и расчет

Разновидности планетарных редукторов

В зависимости от количества ступеней, которые они имеют планетарные редукторы подразделяют на:

  • одноступенчатые;
  • многоступенчатые.

Одноступенчатые более простые и при этом компактнее, меньше по размерам в сравнении с многоступенчатыми, обеспечивают более широкие возможности по передаче крутящего момента, достижения разных передаточных чисел. Обладающие несколькими ступенями являются достаточно громоздкими механизмами, при этом диапазон передаточных чисел, которые ими могут быть обеспечены, существенно меньше.

В зависимости от сложности конструкции они могут быть:

  • простыми;
  • дифференциальными.

Кроме этого, планетарные редукторы в зависимости от формы корпуса, используемых элементов и внутренней конструкции могут быть:

  • коническими;
  • волновыми;
  • глобоидными;
  • червячными;
  • цилиндрическими.

Через них может передаваться движение между параллельными, пересекающимися и перекрещивающимися валами.

Характеристики основных разновидностей этого устройства

Цилиндрические

Самые распространенные. Коэффициент полезного действия этих устройств достигает 95%. Они могут обеспечивать передачу достаточно больших мощностей. Передача движения осуществляется между параллельными и соосными валами. Они могут оснащаться прямозубными, косозубными и шевронными зубчатыми колесами. Коэффициент передачи может колебаться в пределах от 1,5 до 600.

Планетарный редуктор, устройство и расчет

Конические

Такое название они носят потому, что в них используются шестеренки, которые имеют коническую форму. Это обеспечивает плавность сцепки и способность выдерживать достаточно большие нагрузки. Могу иметь одну, две и три ступени. Валы в этой разновидности редукторов могут располагаться как горизонтально, так и вертикально.

Планетарный редуктор, устройство и расчет

Волновые

Они представляют собой конструкцию с гибким промежуточным числом. Состоят они из генератора волн, эксцентрика или кулачка, который обеспечивает растяжение гибкого колеса до достижения его контакта с неподвижным. При этом гибкое колесо имеет наружные зубья, а неподвижное — внутренние.

К достоинствам такого типа редукторов относится:

  • плавность хода;
  • высокое передаточное число;
  • возможность передачи движения через герметичные и сплошные стенки.

Они могут быть одно- и многоступенчатыми. Высокоскоростные оснащены подшипниками скольжения, а низкоскоростные — подшипниками качения.

Планетарный редуктор, устройство и расчет

Достоинства планетарных редукторов

  • Небольшой вес;
  • Широкий диапазон передаточных чисел;
  • Относительная компактность;
  • Собрать и починить такое устройство можно своими руками.

Советы по подбору планетарного редуктора

Главное в этом деле — правильно произвести расчет основных параметров нагрузки и существующих условий эксплуатации этого устройства.

Выбор производиться в зависимости от:

  • типа передачи;
  • максимально допустимых осевых и консольных нагрузок;
  • типоразмера этого устройства;
  • диапазона температур, в которых редуктор может использоваться длительный период и не терять при этом своих полезных качеств и свойств.

Делаем планетарный редуктор своими руками

Первым делом производится проектирование будущей конструкции в зависимости от конструктивных особенностей изделия и задач, которые планируется решать с его использованием. При этом производится расчет таких параметров как передаточное число, расположение валов, количество ступеней и т.д.

Планетарный редуктор, устройство и расчет

Далее производится определение межосевого расстояния. Этот показатель очень важен, так как указывает на способность передавать крутящий момент. Температура внутри устройства во время его работы не должна быть выше, чем 80 градусов по Цельсию.

При конструировании планетарного редуктора производится также расчет:

  • числа передаточных ступеней;
  • количества сателлитных шестеренок и зубьев на них;
  • толщины шестеренок;
  • размещения осей в будущем механизме.

Кроме этого, осуществляется подбор шестеренок, которые выполнены из подходящего материала, расчет сил, которые будут присутствовать при функционировании механизма и проверочный расчет.

Не имея специального оборудования и условий, изготовить составные части этого устройства в условиях домашней мастерской не получится. Планетарный редуктор можно собрать из подобранных частей, которые без труда можно приобрести в торговой сети или на разборке.

Сборка также является делом достаточно непростым, для достижения успеха в этом деле необходимо иметь практический опыт ремонта подобных механизмов, их сборки и разборки, обладать теоретическими познаниями в механике, прочими знаниями и навыками.

Если у вас возникли вопросы — оставляйте их в х под статьей. Мы или наши посетители с радостью ответим на них

Источник: https://SwapMotor.ru/korobka-peredach/planetarnyj-reduktor.html

Расчет передаточного числа планетарного редуктора

  • Планетарные редукторы относятся к механическим зубчатым передачам.
  • Механические передачи служат для передачи энергии на расстояние, как правило с преобразованием по скорости и моменту. В зубчатых передачах движение осуществляется благодаря непосредственному контакту зубчатых коле
  • Редуктор — это устройство преобразующее высокую угловую скорость вращения входного вала (от двигателя) в более низкую на выходном валу (к полезной нагрузке), повышая при этом вращающий момент.
  • Передаточное отношение (i) – это отношение угловой скорости ведущего вала к угловой скорости ведомого вала .

Планетарные редукторы – это механизмы в которых оси отдельных колес являются подвижными. Простейший планетарный редуктор, состоящий из четырех звеньев, изображен на рисунке 1. В этих редукторах колеса с подвижными осями вращения называются планетарными колесами или сателлитами (звено 1), а звено, на котором располагаются оси сателлитов, — водилом или планетарным водилом [H] (звено 2). Зубчатые колеса с неподвижными осями вращения называются солнечными или центральными (звено 3); неподвижное колесо – коронной шестерней, эпициклом или опорным колесом (звено 4). На практике, для повышения прочности планетарного редуктора, количество сателлитов увеличивают до максимально возможного. Планетарный редуктор, изображенный на рисунке 1, носит название редуктора Джемса.

Планетарный редуктор, устройство и расчет

Передаточное отношение U от колеса 3 до водила H редуктора, при неподвижной коронной шестерне, имеет вид:

Планетарный редуктор, устройство и расчетПланетарный редуктор, устройство и расчет

где, U – коэффициент передаточного отношения; индекс (1) – указывает на что, что неподвижным является элемент 1, в данном случае это коронная шестерня; индексы 3 и H — указывают, что расчет передаточного отношения от колеса 3 (солнечная шестерня) к водилу H; r – радиусы колес, индексы указывают на радиус соответствующего колеса (r1 – радиус коронной шестерни);

z – количество зубьев шестерни, индексы указывают на количество зубьев соответствующего колеса);

На рисунке 2 изображен вид классического одноступенчатого планетарного редуктора:

Планетарный редуктор, устройство и расчет

При использовании планетарной передачи в качестве редуктора один из трёх её основных элементов фиксируется неподвижно, а два других служат в качестве ведущего и ведомого.

Таким образом, передаточное отношение будет зависеть от количества зубьев каждого компонента, а также от того, какой элемент закреплён. Для получения самого большого передаточного отношения, неподвижным оставляют коронную шестерню, см. рисунок 3.

Такие передачи как правило используют в планетарных мотор-редукторах, на транспорте и машиностроении.

Читать также:  Уровень своими руками в домашних условияхПланетарный редуктор, устройство и расчет

На практике широко применяются многоступенчатые планетарные редукторы. Давайте рассмотрим двигатель постоянного тока с планетарным редуктором. Для примера возьмем планетарный мотор-редуктор МРП42 производства ООО «Электропривод» с передаточным отношением 1/144. Такое большое передаточное отношение можно получить, используя редуктор с несколькими ступенями. На рисунке 4 изображена первая ступень.

Планетарный редуктор, устройство и расчет

Вращение от мотора передается на водило через сателлиты первой ступени. На водиле первой ступени закреплена шестеренка передающая вращение дальше (на вторую ступень).

Читайте также:  Почему появляется свист под капотом на холодную?

Передаточное отношение первого звена:

Планетарный редуктор, устройство и расчет

Вторая ступень, мало отличается от первой, см. рисунок 5.

Рис. 5. Вторая ступень планетарного редуктора

  1. Передаточное отношение второго звена:
  2. В третьей ступени установлены четыре сателлита, для увеличения нагрузочной способности на редуктор, вследствие чего уменьшен их диаметр, рисунок 6.
  3. Передаточное отношение второго звена:

Рис. 6. Третья ступень планетарного редуктора.

  • Подсчет полного передаточного отношения, складывается из произведения передаточных отношений все звеньев, вошедших в состав редуктора:
  • Подсчитанное по формулам передаточное отношение соответствует заявленному для рассматриваемого в нашем примере мотор-редуктора.

Законченный вариант планетарного редуктора изображен на рисунке 7, в нем добавлен присоединительный фланец с установленным подшипником скольжения. В этом редукторе все шестерни выполнены из металла, что обуславливает продолжительный жизненный цикл изделия.

Рис. 7. Планетарный редуктор в сборе.

  1. Приглашаем на выставку «МЕТАЛЛООБРАБОТКА-2018»
  2. Приглашаем на выставку «Росупак-2017»
  3. Приглашаем на выставку «Металлообработка-2017»
  4. В продаже мотор-редукторы МРП, МРЦ
  5. BMD-R — блоки дистанционного управления коллекторными двигателями постоянного тока
  6. BMD-DIN — начат выпуск блоков управления коллекторными двигателями с креплением на DIN-рейку
  7. Загрузить всю книгу

2.3. Передаточное отношение планетарных и дифференциальных механизмов

Звенья, вращающиеся вокруг неподвижной оси, называются основными или центральными.

Центральное колесо 1 называется солнечным, а неподвижное 3 — коронным или корончатым. Зубчатое колесо 2 имеющее подвижную ось называется сателлитом. Звено Н называется водилом или поводком. Механизмы, в состав которых входят зубчатые колеса с подвижными осями называются планетарными или дифференциальными.

Читать также:  Никель и его сплавы

Планетарными (рис. 14 а) называются механизмы, имеющие одну степень свободы. Дифференциальные (рис. 14 б) механизмы имеют две и более степени свободы.

Эти механизмы обязательно должны быть соосными, то есть оси солнечных колёс должны располагаться на одной и той же прямой линии.

Рассмотрим дифференциальный механизм (рис. 15).

  • где: n=4; ; .
  • , таким образом определённость в движении звеньев этого механизма будет в том случае, если будут известны законы движения двух его ведущих звеньев.

Так как сателлиты имеют подвижные оси, то использовать формулы для расчёта передаточного отношения механизмов с неподвижными осями не представляется возможным. В этом случае прибегают к методу инверсии (метод обращённого движения).

Будем рассматривать движение всех колёс относительно водила. Всем звеньям зададим вращательное движение с угловой скоростью водила, но в обратном направлении и найдём скорости всех звеньев механизма. Для этого вычтем угловую скорость водила из всех угловых скоростей колёс.

  1. Скорость звена в действительном движении (до инверсии)
  2. Скорость звена в обращённом движении (после инверсии)

Механизм, полученный в результате инверсии (остановки водила) называется обращённым (рис. 16). В результате получили обычную зубчатую передачу с неподвижными осями.

  • Эту зависимость (1) называют формулой Виллиса для дифференциальных механизмов.
  • Если бы было n — колёс, то:
  • где s – солнечное колесо.
  • Дифференциальный механизм никакого определённого передаточного отношения не имеет, если ведущим является одно из звеньев (колесо или водило), и приобретает определённость, если ведущих колёс будет два.
  • Передаточное отношение обращённого механизма можно рассчитать,
  • зная числа зубьев колёс.

У планетарных механизмов (рис. 2.29) одно из центральных (основных) колёс неподвижно, тогда формула Виллиса примет вид:

  1. или в общем случае:
  2. Передаточное отношение планетарного механизма от любого n-го колеса равно 1 минус передаточное отношение от этого же самого колеса к солнечному колесу, при неподвижном водиле.
  3. Планетарными называют передачи , в которых , кроме зубчатых ко — лес с неподвижными осями , имеются колеса , вращающиеся и одновре — менно перемещающиеся по окружности ( планетарные колеса или сател — литы ).

Читать также:  Как собрать редуктор шуруповерта макита

Планетарные передачи отличаются компактностью при больших передаточных числах . Вес планетарного редуктора в 2 — 3 раза меньше

по сравнению с весом простых зубчатых редукторов тех же мощностей и передаточных чисел . Это достигается за счет распределения нагрузки между несколькими сателлитами и применения внутреннего зацепле — ния .

Однако планетарные передачи требуют повышенной точности из — готовления и сложнее в сборке , чем простые .

На практике встречается большое количество различных схем планетарных механизмов [1], в данном разделе рассмотрим наиболее известные из них ( рис .1).

Рис .1. Схемы планетарных передач : а — с одновенцовым сателлитом ; б — с двух — венцовым сателлитом , с одним внешним и одним внутренним зацеплением ; в — с двухвенцовым сателлитом , с двумя внешними зацеплениями ; г — с двухвен — цовым сателлитом , с двумя внутренними зацеплениями . 1, 3 — центральные зуб — чатые колеса ; 2, 2′ — планетарные колеса или сателлиты ; H — водило

  • Звено , в котором закреплены оси сателлитов , называют водилом H .
  • В одних схемах движение подается на одно из центральных колес ,
  • а снимается с водила , в других ведущим является водило , а ведомым — центральное колесо .

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

Передаточное отношение планетарной передачи

  1. При определении передаточного отношения планетарного меха — низма используют метод обращения движения . Он состоит в том , что всем звеньям механизма сообщают добавочную угловую скорость , рав —
  2. ную по величине угловой скорости водила и противоположную ей по направлению (– w Н ). Тогда угловые скорости всех колес уменьшаются на величину w Н , а угловая скорость водила становится равной нулю , и пла — нетарный редуктор превращается в простой зубчатый , для которого от —
  3. ношение угловых скоростей может быть выражено через отношение
  4. чисел зубьев входящих в него колес .
  5. Формула передаточного отношения планетарных механизмов для приведенных на рис .1 схем имеет вид :

Источник: https://morflot.su/raschet-peredatochnogo-chisla-planetarnogo/

Детали машин



Планетарными называют передачи, имеющие зубчатые колеса с подвижными осями. Отличительной особенностью механизмов, включающих планетарную передачу (или передачи), является наличие двух или более степеней свободы. При этом угловая скорость любого звена передачи определяется угловыми скоростями остальных звеньев.

Наибольшее распространение получила простая одинарная планетарная передача (рис. 1), которая состоит из центрального колеса 1 с наружными зубьями, неподвижного центрального колеса 3 с внутренними зубьями; сателлитов 2 – колес с наружными зубьями, зацепляющихся одновременно с колесами 1 и 3 (на рис.

1 число сателлитов с = 3), и водила Н, на котором закреплены оси сателлитов. Водило соединено с тихоходным валом. В планетарной передаче одно колесо неподвижно (соединено с корпусом).

Обычно внешнее центральное колесо с внутренними зубьями называют коронным (коронная шестерня или эпицикл), а внутреннее колесо с внешними зубьями – солнечным колесом (солнечная шестерня или солнце).

Планетарный редуктор, устройство и расчет

При неподвижном колесе 3 вращение колеса 1 вызывает вращение сателлитов 2 относительно собственных осей, а обкатывание сателлитов по колесу 3 перемещает их оси и вращает водило Н. Сателлиты таким образом совершают вращение относительно водила и вместе с водилом вокруг центральной оси, с. е. совершают движение, подобное движению планет. Поэтому такие передачи и называют планетарными.

При неподвижном колесе 3 движение передают чаще всего от колеса 1 к водилу Н, можно передавать движение от водила Н к колесу 1.

Планетарный редуктор, устройство и расчет

В планетарных передачах применяют не только цилиндрические, но и конические колеса с прямым или косым зубом.

Если в планетарной передаче сделать подвижными все звенья, т. е. оба колеса и водило, то такую передачу называют дифференциальной.

С помощью дифференциального механизма можно суммировать движение двух звеньев на одном или раскладывать движение одного звена на два других.

Например, в дифференциале заднего моста автомобиля движение от водила Н передают одновременно колесам 1 и 3, что позволяет при повороте одному колесу вращаться быстрее другого.

***

Разновидности планетарных передач

Существует много различных типов и конструкций планетарных передач. Наиболее широко в машиностроении применяют однорядную планетарную передачу, схема которой показана на рисунке 1. Эта передача конструктивно проста, имеет малые габариты. Находит применение в силовых и вспомогательных приводах. КПД планетарной передачи η = 0,96…0,98 при передаточных числах u = 3…8.

Планетарные механизмы, в составе которых присутствуют одна или несколько планетарных передач подразделяются на однорядные, двухрядные и многорядные.

Каждый набор из центральных зубчатых колёс и сателлитов, вращающихся в одной плоскости, образует так называемый планетарный ряд. Простой планетарный механизм с набором одновенцовых сателлитов является однорядным.

Простые планетарные механизмы с двухвенцовыми сателлитами являются двухрядными. Сложные планетарные механизмы могут быть двух, трёх, четырёх и даже пятирядными.

Для получения больших передаточных чисел в силовых приводах применяют многоступенчатые планетарные передачи. На рис. 2,а планетарная передача составлена из двух последовательно соединенных однорядных планетарных передач. В этом случае суммарное передаточное число u = u1×u2 ≤ 64, а КПД равен η = η1×η2 = 0,92…0,96.

Планетарный редуктор, устройство и расчет

  • На рисунке 2, б показана схема планетарной передачи с двухрядным (двухвенцовым) сателлитом, для которой при передаче движения от колеса 1 к водилу Н при n4 = 0 передаточное число определяется из зависимостей:
  • u = n1/nН = 1 + z2z4/(z1z3).
  • В этой передаче u = 3…19 при КПД η = 0,95…0,97.
  • Как упоминалось выше, планетарные передачи, у которых все звенья подвижны, называют дифференциальными или просто дифференциалами.
Читайте также:  Тормозная система автомобиля газ-66 и нюансы ее эксплуатации

Планетарный редуктор, устройство и расчет

Неизбежные погрешности изготовления приводят к неравномерному распределению нагрузки между сателлитами.

Для выравнивания нагрузки в передачах с тремя сателлитами одно из центральных колес выполняют самоустанавливающимся в радиальном направлении (не имеющим радиальных опор).

Для самоустановки сателлитов по неподвижному центральному колесу применяют сферические подшипники качения. Высокие требования предъявляются к прочности и жесткости водила, при этом его масса должна быть минимальной. Обычно водила выполняют литыми или сварными.

***

Достоинства и недостатки планетарных передач

Основными достоинствами планетарных передач являются:

  • малые габариты и масса вследствие передачи мощности по нескольким потокам, численно равным количеству сателлитов. При этом нагрузка в каждом зацеплении уменьшается в несколько раз;
  • удобство компоновки в машинах благодаря соосности ведущего и ведомого валов;
  • работа с меньшим шумом, чем в обычных зубчатых передачах, что обусловлено меньшими размерами колес и замыканием сил в механизме. При симметричном расположении сателлитов силы в передаче взаимно уравновешиваются;
  • малые нагрузки на валы и опоры, что упрощает конструкцию опор и снижает потери в них;
  • возможность получения больших передаточных чисел при небольшом числе зубчатых колес и малых габаритах передачи.

Не лишены планетарные передачи и недостатков:

  • повышенные требования к точности изготовления и монтажа передачи;
  • большее количество деталей, в т. ч. подшипников, и более сложная сборка.

***

Область применения планетарных передач

Планетарные передачи применяют как редукторы в силовых передачах и приборах, в коробках передач автомобилей и другой самоходной техники, при этом передаточное число такой КПП может изменяться путем поочередного торможения различных звеньев (например, водила или одного из колес), в дифференциалах автомобилей, тракторов и т. п.

Широкое применение планетарные передачи нашли в автоматических коробках передач автомобилей благодаря удобству управления передаточными числами (переключением передач) и компактности. Можно встретить планетарные передачи и в механизмах привода ведущих колес современных велосипедов. Часто применяют планетарную передачу, совмещенную с электродвигателем (мотор-редуктор, мотор-колесо).

***

Передаточное число планетарных передач

При определение передаточного числа планетарной передачи используют метод остановки водила (метод Виллиса). По этому методу всей планетарной передаче мысленно сообщается дополнительное вращение с частотой вращения водила nН, но в обратном направлении. При этом водило как бы останавливается, а закрепленное колесо освобождается.

Получается так называемый обращенный механизм, представляющий собой обычную непланетарную передачу, в которой геометрические оси всех колес неподвижны. Сателлиты при этом становятся промежуточными (паразитными) колесами, т. е. колесами, не влияющими на передаточное число всего механизма.

Передаточное число в обращенном механизме определяется как в духступенчатой передаче с одним внешним и вторым внутренним зацеплением.

Здесь существенное значение имеет знак передаточного числа. Передаточное число считают положительным, если в обращенном механизме ведущее и ведомое звенья вращаются в одну сторону, и отрицательным, если в разные стороны. Так, для обращенного механизма передачи по рис. 1 имеем:

  1. u = u1×u2 = (-n1/n2)×(-n2/-n3) = (-z2/z1)×(z3/z2) = — z3/z1,
  2. где z – числа зубьев колес.
  3. В рассматриваемом обращенном механизме знак минус показывает, что колеса 2 и 3 вращаются в обратную сторону по отношению к колесу 1.

В качестве примера определим передаточное число для планетарной передачи, изображенной на рис. 1, при передаче движения от колеса 1 к водилу Н. Мысленная остановка водила в этой передаче равноценна вычитанию его частоты nН из частоты вращения колес. Тогда для обращенного механизма этой передачи имеем:

  • u’ = (n1 – n2)/(n3 – nН) = — z3/z1,
  • где (n1 – nН) и (n3 – nН) – частоты вращения колес 1 и 3 относительно водила Н; z1 и z3 – числа зубьев колес 1 и 3.
  • Для планетарной передачи, у которой колесо 3 закреплено в корпусе неподвижно (n3 = 0), колесо 1 является ведущим, а водило Н – ведомым. Тогда получим передаточное число такой передачи:
  • (n1 – nН)/(- nН) = — z3/z1; — n1/nН + 1 = -z3/z1
  • или
  • u = n1/nН = 1 + z3/z1.
  • ***



В отличие от обычных зубчатых передач расчет планетарных начинают с подбора чисел зубьев на колесах и сателлитах. Рассмотрим последовательность подбора чисел зубьев на примере планетарной передачи, изображенной на рис. 1.

Число зубьев z1 центральной шестерни 1 задают из условия неподрезания ножки зуба: z1 ≥ 17. Принимают z1 = 24 при Н ≤ 350 НВ; z1 = 21 при Н ≤ 52 HRC и z1 = 17 при Н > 52 HRC.

Число зубьев неподвижного центрального колеса 3 определяют по заданному передаточному числу u:

z3 = z1(u – 1).

Число зубьев z2 сателлита 2 вычисляют из условия соосности, в соответствии которым межосевые расстояния aw зубчатых пар с внешним и внутренним зацеплением должны быть равны. Из рис. 1 для немодифицированной прямозубой передачи:

  1. aw = 0,5(d1 + d2) = 0,5(d3 – d2),        (1)
  2. где d = mz — делительные диаметры колес.
  3. Так как модули зацеплений планетарной передачи одинаковые, то формула (1) принимает вид:
  4. z2 = 0,5(z3 – z1).
  5. Полученные числа зубьев z1, z2, и z3 проверяют по условиям сборки и соседства.

Условие сборки требует, чтобы во всех зацеплениях центральных колес с сателлитами имело место совпадение зубьев со впадинами, в противном случае собрать передачу будет невозможно.

Установлено, что при симметричном расположении сателлитов условие сборки удовлетворяется, когда сумма зубьев центральных колес (z1 + z3) кратна числу сателлитов с = 2…6 (обычно с = 3), т. е.

должно соблюдаться условие:

(z1 + z3)/c = целое число.

Условие соседства требует, чтобы сателлиты не задевали зубьями друг друга. Для этого необходимо, чтобы сумма радиусов вершин зубьев соседних сателлитов, равная da2 = m(z2 + 2) , была меньше расстояния l между их осями (рис. 1), т. е.:

  • da2 < l = 2aw sin (180˚/c),        (2)
  • где aw = 0,5m(z1 + z2) – межосевое расстояние.
  • Из формулы (2) следует, что условие соседства удовлетворяется, когда
  • z2 + 2 (z1 + z2) sin (180˚/c).        (3)

Планетарный редуктор, устройство и расчет

***

Расчет на прочность планетарных передач

Расчет на прочность зубчатых передач планетарного типа ведут по методике, применяемой для обычных зубчатых передач.

Основными критериями работоспособности для большинства планетарных передач (как и для всех зубчатых передач), является усталостная контактная прочность рабочих поверхностей зубьев и прочность зубьев при изгибе.

При этом под контактной прочностью понимают способность контактирующих поверхностей зубьев обеспечить требуемую безопасность против прогрессирующего усталостного выкрашивания, а прочностью при изгибе – способность зубьев обеспечить требуемую безопасность против усталостного излома зуба.

Расчет выполняют для каждого зацепления. Например, в передаче, изображенной на рис. 1, необходимо рассчитать внешнее зацепление колес 1 и 2 и внутреннее – колес 2 и 3. Так как модули и силы в этих зацеплениях одинаковы, а внутреннее зацепление по своим свойствам прочнее внешнего, то при одинаковых материалах колес достаточно рассчитать только внешнее зацепление.

Расчет начинают с подбора чисел зубьев колес, как было показано выше.

При определении допускаемых напряжений коэффициенты долговечности находят по эквивалентных числам циклов нагружения. При этом число циклов перемены напряжений зубьев за весь срок службы вычисляют при вращении колес только относительно друг друга.

  1. При определении допускаемых напряжений изгиба для зубьев сателлита вводят коэффициент YA, учитывающий двустороннее приложение нагрузки (симметричный цикл нагружения).
  2. Межосевое расстояние планетарной прямозубой передачи для пары колес внешнего зацепления (центральной шестерни с сателлитом) определяют по формуле:
  3. aw = 450(u’ + 1)× 3√{(КНТ1Кc)/(ψbau'[σ]Н2с)},
  4. где u' = z2/z1 – передаточное число рассчитываемой пары колес; Кc = 1,05…1,15 – коэффициент неравномерности распределения нагрузки между сателлитами; Т1 – вращающий момент на валу центральной шестерни, Нм; с – число сателлитов; ψba — коэффициент ширины венца колеса:         ψba = 0,4 для Н ≤ 350 НВ;         ψba = 0,315 при 350 НВ < Н ≤ 50 HRC,         ψba = 0,25 для Н > 50 HRC.

Ширина b3 центрального колеса 3 определяется по формуле b3 = ψbaaw. Ширину b2 венца сателлита принимают на 2…4 мм больше значения b3; ширина центральной шестерни b1 = 1,1b2.

  • Модуль зацепления определяют по формуле:
  • m = 2aw/(z2 + z1).
  • Получнный расчетом модуль округляют до ближайшего стандартного значения, а затем уточняют межосевое расстояние:
  • aw = m(z2 + z1)/2.
  • Окружную силу Ft в зацеплении вычисляют по формуле:
  • Ft = 2×103КcТ1/сd1.
  • Радиальную силу Fr определяют по формуле:
  • Fr = Ft tg αw,
  • где αw = 20˚ – угол зацепления.
  • ***
  • Волновые передачи



Главная страница

Специальности

Учебные дисциплины

Олимпиады и тесты

Источник: http://k-a-t.ru/detali_mashin/24-dm_zubchatye12/index.shtml

Планетарные редукторы

Редукторы с зубчатыми передачами, в которых имеются колеса с перемещающимися осями, называются планетарными.

Планетарные передачи позволяют получить большие передаточные числа редукторов при малом числе зубчатых колес.

Габариты планетарных редукторов меньше, чем габариты обычных редукторов при одинаковых передаточных числах и нагрузках. Планетарные передачи несколько сложнее в изготовлении.

Кинематические схемы планетарных редукторов

Планетарные передачи с одновенцовыми (рис. 1 ) и двухвенцовыми (рис. 3) сателлитами, а также многоступенчатые передачи (рис. 2) имеют средние передаточные числа (2…30) и высокий КПД (0,9…0,97).

Читайте также:  Что делать, если стрелка тахометра прыгает?

Одноступенчатый планетарный редуктор

Планетарный редуктор, устройство и расчет

Рис.1

Валы расположены параллельно установочной плоскости корпуса.

Центральное колесо 1 — ведущее, водило Н — ведомое. Центральное колесо 3 закреплено в корпусе.

Ведущий и ведомый валы вращаются в одну сторону.

Двухступенчатый планетарный редуктор. Схема 1

Планетарный редуктор, устройство и расчет

Рис.2

Валы расположены параллельно установочной плоскости корпуса.

Центральное колесо 1 — ведущее, водило Н2 — ведомое. Центральные колеса 3 и 6 закреплены в корпусе.

Ведущий и ведомый валы вращаются в одну сторону.

Двухступенчатый планетарный редуктор. Схема 2

Планетарный редуктор, устройство и расчет

Рис.3

Валы расположены параллельно установочной плоскости корпуса.

Центральное колесо 1 — ведущее, водило Н — ведомое. Центральное колесо 4 закреплено в корпусе. Колеса 2 и 3 жестко соединены между собой.

Ведущий и ведомый валы вращаются в одну сторону.

Двухступенчатый планетарный редуктор. Схема 3

Планетарный редуктор, устройство и расчет

Рис. 4

Валы расположены параллельно установочной плоскости корпуса.

Центральное колесо 1 — ведущее, центральное колесо 5 — ведомое. Центральное колесо 3 закреплено в корпусе, колеса 2 и 4 жестко соединены между собой.

Ведущий и ведомый валы вращаются при D5D3 — в противоположные стороны.

Планетарные передачи с тремя центральными колесами (рис. 4) имеют большие передаточные числа (100… 200). С увеличением передаточного числа КПД резко снижается.

Двухступенчатый планетарный редуктор с кривошипом

Планетарные передачи с кривошипами (рис. 5,6) имеют большие передаточные числа (100…200), но сравнительно низкие КПД.

Планетарный редуктор, устройство и расчет

Рис. 5

Валы расположены параллельно установочной плоскости корпуса.

Водило Н — ведущее, центральное колесо 4 — ведомое. Центральное колесо 2 закреплено в корпусе, колеса 1 и 3 жестко соединены между собой.

Ведущий и ведомый валы вращаются при D3D2 — в противоположные стороны.

Одноступенчатый планетарный редуктор с кривошипом

Рис. 6

Валы расположены параллельно установочной плоскости корпуса.

Водило Н — ведущее, вал с кривошипами К — ведомый. Центральное колесо 2 закреплено в корпусе.

Передаточное число 

Ведущий и ведомый валы вращаются в разные стороны.

Кинематическая схема волнового редуктора

 На рис. 7 дана схема волнового зубчатого редуктора.

Рис. 7

Генератор волн Н (кулачок и подшипник с гибкими кольцами) — ведущий, колесо 1 с гибким венцом — ведомое, колесо 2 закреплено в корпусе.

Передаточное число 

Чертежи и устройство планетарных редукторов

Источник: https://pro-techinfo.ru/konstruktsii-detalej-mashin-onlajn/peredachi-detalej-mashin/planetarnye-reduktory/

Планетарный редуктор: описание,преимущества,характеристики,принцип работы

Двухступенчатый планетарный редуктор представляет собой конструкцию, составленную из шестеренок и других рабочих элементов, которые приводятся в движение посредством зубчатой передачи. При этом двигаются они по принципу, который заложен в механике вращения планет – вокруг одного центра.

По этой причине центральная шестерня именуется «солнечной», промежуточные — «сателлитами», а внешняя с внутренним зубчатым сцеплением — «коронной». Кроме этого, самый простой планетарный редуктор состоит из водила.

Оно предназначено для фиксации сателлитов относительно друг друга, чтобы они двигались вместе.

Для правильной работы устройства необходимо, чтобы одна из составляющих его частей была жестко закреплена на корпусе. В планетарном редукторе, который оснащен водилом, статической частью является именно оно.

Кроме этого, жестко закрепленным может быть коронная или солнечная шестеренки.

  В случае если ни одна из частей этого устройства не закреплена, имеется возможность расщепления одного движения на несколько, либо слияние двух в одно.

При этом в сцепке с ведущим и ведомым валом может быть как коронная, так и солнечная шестерни, или сателлиты. Этот механизм может осуществлять повышение передаточного числа и снижение крутящего момента и на оборот.

Планетарный редуктор, устройство и расчет

Преимущества планетарных устройств

По сравнению с традиционными редукторами можно выделить следующее преимущества, которые имеет это устройство: они могут создавать огромные передаточные отношения скоростей при невысоком количестве шестеренок. Шестерни механизма имеют небольшой размер благодаря их количеству.

Так, одно более массивное колесо распределяет равномерно нагрузку по нескольким сателлитам. Из этого следует, что устройство получается не очень большим и громоздким. Однако, расчет и практика показывают, что при высоких передаточных числах работоспособность и коэффициент полезного действия сильно снижаются.

 И как вывод всего вышесказанного, основными преимуществами являются:

  • Большие передаточные числа;
  • Невысокая масса;
  • Относительная компактность;
  • Его можно чинить и собирать своими руками.

Такие преимущества требуют и соответствующего изготовления. Начиная с расчета, проектирования и заканчивая изготовлением – все должно быть прецизионно точно.

Эти редукторы нашили очень широкий ряд применений в различных отраслях: прибостроительной, станкостроительной, машиностроительной и т.д.

В данной статье остановимся более подробно на применении этого устройства в машиностроительной отрасли.

Описание и принцип работы:

Планетарные редукторы имеют ряд общих черт с цилиндрическими редукторами, так как передача усилия так же происходит посредством зубчатой передачи, а в конструкции используются зубчатые колеса. Однако конструкция планетарных редукторов, как и принцип работы, сложнее.

В общем случае в планетарном редукторе можно выделить следующие основные детали: коронная шестерня, планетарные шестерни (сателлиты), водило и солнечная шестерня. По аналогии с Солнцем, расположенным в центре солнечной системы, солнечная шестерня расположена в центре рабочей части редуктора.

Она находится в зацеплении с идентичными планетарными шестернями, оси которых расположены на окружности, центр которой лежит на оси солнечной шестерни, и в то же время сателлиты сцеплены с коронной шестерней, представляющей собой зубчатое колесо с внутренним зацеплением.

Водило жестко закрепляет все сателлиты относительно друг друга.

Планетарный редуктор, устройство и расчет

Основные характеристики редукторов

  • Основные характеристики редукторов: КДП, частота вращения входного и выходного валов, передаточное отношение, передаваемая мощность, количество ступеней и тип передач.
  • Передаточное отношение – это отношение скоростей вращений входного к скорости вращения выходного вала.
  • i = wвх/wвых
  • КПД редуктора определяется отношением мощности на входном валу к мощности на выходном валу
  • n = Pвх/Pвых

Классификация планетарных редукторов:

По количеству ступеней планетарного редуктора выделяют:

одноступенчатый планетарный редуктор

  • одноступенчатые
  • многоступенчатые

Одноступенчатые редукторы наиболее компактны, в то время как многоступенчатые значительно сложнее по конструкции и занимают больше места, но позволяют достичь больших передаточных чисел.

По факту жесткого закрепления одного из элементов редуктора выделяют:

  • простейшие
  • дифференциальные

В простейших планетарных редукторах одно из звеньев жестко закреплено, и передача усилия происходит от одного из незакрепленных звеньев к другому с фиксированным передаточным числом. В дифференциальных редукторах ни один из элементов не закреплен, что позволяет использовать редуктор как дифференциальный механизм.

Устройство планетарного редуктора

Основными частями планетарного редуктора, как правило, являются такие элементы, как солнечная шестеренка, которая, как сказано выше, расположена в центре редуктора. Так же к основным элементам относятся, водило. Эта деталь редуктора предназначена для прочной фиксации осей остальных шестерней, или как их еще называют сателлитов.

Сателлиты представляют собой одинакового размера шестеренки, которые располагаются вокруг основной шестерни. И наконец, еще одной важной деталью планетарного редуктора является шестерня, которая называется кольцевой. Эта шестеренка имеет вид зубчатого вида колеса, которое распложено по краю всех частей редуктора, данная часть имеет сцепку с сателлитами.

Принцип работы планетарного редуктора выглядит следующим образом.

Один из элементов данного устройства всегда остается неподвижным, в данном случае это кольцевая деталь. Ведущей деталью в планетарном редукторе является солнечная шестерня, а ведомыми, стало быть, сателлиты.

Как правило, наиболее часто применение планетарного вида редукторов используется в такой отрасли как машиностроение. Однако нередко его еще применяют при изготовлении различного рода станков для резки металла.

Довольно часто используется сразу несколько планетарных редукторов, как правило, этими редукторами оснащается автоматическая коробка передач.

Планетарные редукторы в машиностроении

Планетарный редуктор, устройство и расчет

Ремонт редуктора своими руками

Ремонт редуктора своими руками является весьма непростой задачей. Так, данный механизм очень непростой и состоит из множества частей. При ремонте своими руками часто можно даже при разборке не ведая, что внутри просто растерять целую кучу маленьких деталей, например, иголки моментально рассыпаются и теряются. Ремонт планетарного редуктора лучше всего оставить профессионалам.

Стоит отметить, что на сегодняшний день планетарный редуктор весьма распространен и используется в большинстве грузовых автомобилей в ведущих мостах, а также очень часто встречается в роли лебедок.

Как и все редукторы, он может быть как одноступенчатым, так и многоступенчатым.

Если Вы собираетесь приобрести механизм данного типа, то лучше всего покупать его у проверенных производителей, так как ремонт своими руками очень затруднен, а если он будет часто выходить из строя, то денег на него будет уходить много.

В данной статье мы попытались собрать общую информацию по устройствам планетарного типа использующихся для производства автомобилей. Также нужно сказать, что данный вид устройства очень интенсивно внедряется во многие сферы и отрасли благодаря своим очень весомым преимуществам.

Советы по подбору планетарного редуктора

Главное в этом деле — правильно произвести расчет основных параметров нагрузки и существующих условий эксплуатации этого устройства.

Выбор производиться в зависимости от:

    • типа передачи;
    • максимально допустимых осевых и консольных нагрузок;
    • типоразмера этого устройства;
    • диапазона температур, в которых редуктор может использоваться длительный период и не терять при этом своих полезных качеств и свойств.

Источник: https://seite1.ru/zapchasti/planetarnyj-reduktor-opisaniepreimushhestvaxarakteristikiprincip-raboty/.html

Ссылка на основную публикацию